6.2 SDM结果展示
6.2.1 SDM响应曲线
rattler.me
plot(rattler.me)
response(rattler.me )
6.2.2 SDM概率分布图
概率连续分布图投影
rattler.pred <- predict(rattler.me, modelEnv)
plot(rattler.pred, main="Predicted Suitability")
map('worldHires', fill=FALSE, add=TRUE)
points(rattler$lon, rattler$lat, pch="+", cex=0.2)
r <- predict(me, predictors, args=c("outputformat=raw"), progress='text',
filename='maxent_prediction.grd')
ped1 <- predict(mod,clim_mask)
plot(ped1)
ped2 <- predict(mod,clim)
plot(ped2)
ped3 <- predict(mod,env_occ_train)
head(ped3)
概率分布图二值化Thresholds
thd1 <- threshold(mod_eval_train,stat="no_omission")
thd2 <- threshold(mod_eval_train,stat="spec_sens")
thd3 <- threshold(mod_eval_train,stat="sensitivity",sensitivity=0.9)
thd4 <- threshold(mod_eval_train,stat="sensitivity",sensitivity=0.95)
plot(ped1>=thd1)
变量评估重要性
var.imp <- drop(get_variables_importance(PIPO.mod))
barplot(height = t(var.imp),
beside = TRUE,
horiz = TRUE,
xlab = "Variable Importance",
legend = c("GLM", "GAM", "ANN", "RF", "MAXENT"))